

HPC cluster Initiation

i-Trop Presentation

Julie ORJUELA-BOUNIOL, IE Bioinformaticienne

Ndomassi TANDO, IR Ingénieur systèmes Animateur plateau, RMQ

Christine TRANCHANT-DUBREUIL, IR Bioinformaticienne

i-Trop Presentation

Requests form

https://bioinfo.ird.fr/index.php/cluster-fr/

- o Account
- o Software
- O Projects
- Incidents: contact <u>bioinfo@ird.fr</u>

• Howtos:

https://bioinfo.ird.fr/index.php/tutorials-fr/howtosfor-hpc-cluster-itrop/

• Slurm Tutorials:

https://bioinfo.ird.fr/index.php/tutorials-fr/slurm/

• FAQ:

https://bioinfo.ird.fr/index.php/faq-fr/

ARCHITECTURE

- A logical unit composed of several servers
- A powerful unique machine
- Allow to obtain high computing performance
- A bigger capacity storage
- More reliable
- A better ressources availability

- A logical unit composed of several servers
- A powerful unique machine
- Allow to obtain high computing performance
- A bigger capacity storage
- More reliable
- A better ressources availability

Cluster components

• Master Node

Handle ressources and jobs priorities

Computing nodes
 Resources (CPU or RAM memory)

Cluster components

Master Node

Handle ressources and jobs priorities

Computing nodes
 Resources (CPU or RAM memory)

STORAGE

San
 Storage

Architecture: components role

• 1 Master node

bioinfo-master1.ird.fr

Role :

- Launch and prioritize jobs on computing nodes
- Accessible from the Internet
- Connection :

ssh login@bioinfo-master1.ird.fr

Architecture: components role

1 Master node

bioinfo-master1.ird.fr

• 32 nodes

nodeX X : 0..31 Role :

- Launch and prioritize jobs on computing nodes
- Accessible from the Internet
- Connection :

ssh login@bioinfo-master1.ird.fr

Role :

- Used by the master to execute jobs
- Not accessible from the Internet
- node0 to node31

Step 1: Connection, srun

Analyses step of the cluster

Connection to bioinfomaster1.ird.f r and resources reservation

Step 1 srun ou sbatch

Partitions

Partitions	Use	Nodes RAM features	Nodes Core features
short	Short jobs < 1 jour	48 to 64 GB	12 cores
normal	Short jobs max 14 days	64 to 512 GB	12 to 112 cores
long	45 days > long jobs > 14 days	48 GB	12 to 24 cores
highmem	Jobs with memory needs	512GB	112 cores
supermem	Jobs with big memory needs	1TB	40 cores
gpu	Need for analyses on GPU cores	192GB	24 cpu et 8 GPU cores

- Partition to work on GPUs processors : basecalling, MiniOn etc..
- Restricted access to gpu_account group
- Request access with arguments to do here:

https://itrop-glpi.ird.fr/plugins/formcreator/front/formlist.php

YES

-Trop

-Trop

-Trop

Rules	Partition	Tools example	comments
basecalling, demultiplexing, correction	gpu	medaka, guppy, machine learning tools	Restricted access
assembling >100G RAM	supermem	miniasm, flye, raven, smartdenovo	Target genome> 400 Mb (Rice genome doesn't need 100GB)
genomicsbd (gatk) > 100G RAM	supermem	GATK genomicsDB	Target genome of more than 400 Mb (>10 samples)
assemblings => 35G et < 100G RAM	highmem	miniasm, flye, raven, smartdenovo	Target genome between 100 and 400 Mb
Pops structure	long		
simulations	long		
metagenomic	normal	quiime2, frogs	
mapping	normal	bwa, minimap2, hisat2	Need a lot of cores not too many RAM Tool number of cores = number of cores to reserve
genotypage	normal	GATK haplotypecaller, samtools mpileup, bcftools	Need a lot of cores not too many RAM Tool number of cores = number of cores to reserve
stats	normal	R	
scripts test	short	bash, python, R	

Architecture: elements role

I Master node

bioinfomaster1.ird.fr

Role :

- Launch and prioritize jobs on compting nodes
- Accessible from the Internet

• 32 Nodes

Rôle :

- Used by the master to execute jobs
- Not accessible from the Internet

• 1 san

bioinfo-san.ird.fr (san)

Role :

- Store users data
- Accessible from the Internet
- To transfer data : via filezilla or scp

san server

node servers

node servers san server virtual link /users /users /projects /projects virtual link /scratch /scratch /scratch

Analyses steps of the cluster

mkdir

Step 2:srun, partition

2

Data transfer on the i-Trop Cluster

Data transfer on i-Trop cluster

/users, /projects/medium/, /projects/large, /projects/xl, projects/xxl ou /share

Analyses steps of the cluster

Copy your data from your PC/MAC to the san if they are not on the cluster

Step 3: filezilla

Go to the **<u>Practice3</u>** of the github

• Copy between 2 remote servers :

scp -r source destination

• Syntax if the source is remote:

scp -r server_name:/path/file_to_copy local_folder

• Syntaxe si la destination est distante :

scp -r /path/file_to_copy nameserver:/path/remote_server

Ex: scp -r san:/home/tando/data/folder /scratch/tando/

Analyses step on the cluster

Connection to bioinfomaster1.ird. fr and resources reservation

Step 1

scp

Step 4: scp to nodes

Go to the Practice4 of the github

- Allow to choose the version of software you want to use
- 2 types of softwares : bioinfo : includes all the bioinformatics softwares
 (example BEAST) system : includes all the system softwares(example JAVA)
- Overcome the environment variables

- See the available modules : module avail
- Obtain infos on a particular module: module whatis + module name
- Load a module : module load + modulename
- List the loaded module : module list
- Unload a module : module unload + modulename
- Unload all the modules : module purge

Analyses steps of the cluster

Step 5 module

Step 5: module environment

Analyses steps of the cluster

Connection to bioinfomaster1.ird. fr and resources reservation

Step 1

- Load the software version to launch
- Launch the data analysis

\$~ command <options> <arguments>

With *command*: the command to launch

Step 6: launch the analysis

• Copy between 2 remote servers :

scp -r source destination

• Syntax if the source is remote:

scp -r server_name:/path/file_to_copy local_folder

• Syntax if the destination is remote :

scp -r /path/file_to_copy nameserver:/path/remote_server

Analyses steps of the cluster

Step 7: Retrieve results

Go to the <u>Practice7</u> of the github

- Scratch = temporary spaces
- Verify that the copy is OK
- Use rm command

cd /scratch rm -rf nom_rep

Analyses steps of the cluster

Step 8: data deletion

Scripts to visualize/delete temporary data

- Scripts location: /opt/scripts/scratch-scripts
- Visualize data on scratchs: scratch_use.sh

sh /opt/scripts/scratch-scripts/scratch_use.sh

• Delete data on scratch: clean_scratch.sh

sh /opt/scripts/scratch-scripts/clean_scratch.sh

Main Slurm commands

Commande	Description	Example
sruntime=0X:00pty bash -i	Interactive way to connect to a node for X minutes	sruntime=02:00:00pty bash -i Connection for 2 hours
sbatch	Launch a analyses in background via a script	sbatch script.sh
sinfo	Informations on partitions	sinfo
scancel	Deletion of jobs <job_id></job_id>	scancel 1029
squeue	Infos onjobs	squeue -u tando
scontrol show job <job_id></job_id>	Infos on active job <job_id></job_id>	scontrol show job 1029
sacct -j <job_id></job_id>	Infos on finished job <job_id></job_id>	sacct -j 1029

More Slum infos here: https://bioinfo.ird.fr/index.php/tutorials-fr/slurm/#part-2

Options of sbatch, srun, salloc

Options	Description	Example
job-name= <name></name>	Name the job	sbatchjob-name=tando_blast
-p <partition></partition>	Choose a partition	sbatch -p highmem
nodelist= <nodex></nodex>	Choose a particular node	sbatch -p normalnodelist=node14
<pre>-n <nbre_taches></nbre_taches></pre>	Launch several instance of a command	srun -n 4 hostname
-c <nb_cpu_par_tache></nb_cpu_par_tache>	Allocate the number of cpus per task	srun -n 4 -c 2 hostname
mail-user= <emailaddress></emailaddress>	Send a email	sbatchmail- user=ndomassi.tando@ird.fr
mail-type= <event></event>	Send a email when: END: end of the job FAIL: abort BEGIN: beginning ALL: all	sbatchmail-type=BEGIN

LAUNCH A JOB

- Scheduler choose resources automatically
- Use up to 24 cores at the same time
- Possibility to configure this choice
- Jobs launch in background
 - \rightarrow possibility to turn off your PC/MAC
 - \rightarrow automatic results retrieving

- Execute a script via Slurm
- Use:

\$~ **sbatch** script.sh

With script.sh : the name of the script

First part of the script (in green): sge execution options with the key word #SBATCH

#!/bin/bash

bash scripts syntax

In the 2nd part of the script: the command to execute

nom_variable1="valeur_variable1"
nom_variable2="valeur_variable2"

sleep 30 hostname

Launch a script with sbatch

Satisfaction survey

It is mandatory for you to fill this form to have your account extend :

https://itrop-survey.ird.fr/index.php/432222?lang=fr

If you use i-Trop Bioinformatics resources.

Thank you for citing us with:

Citations

"The authors acknowledge the ISO 9001 certified IRD i-Trop HPC (South Green Platform) at IRD montpellier for providing HPC resources that have contributed to the research results reported within this paper.

URL: https://bioinfo.ird.fr/- http://www.southgreen.fr
"

- Include a budget for bioinformatics resources in your answer to projects funding
- A need in hard drives, renew machines etc...
- Available quotations

Projects

• Contact : help, needs definition, quotations...

Thank you for you attention !

Le matériel pédagogique utilisé pour ces enseignements est mis à disposition selon les termes de la licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Partage dans les Mêmes Conditions (BY-NC-SA) 4.0 International:

http://creativecommons.org/licenses/by-nc-sa/4.0/