
Supplementary information to CulebrONT pipeline

Orjuela J., Comte A., Ravel S., Charriat F., Vi T., Sabot F., Cunnac S.

July 23, 2022

1 CulebrONT’s architecture

CulebrONT is a snakemake pipeline originally created to assemble ONT reads, but also working
on PB, that can also polish primary assemblies and provide quality metrics, in order to facilitate
comparison of assembly methods. Using CulebrONT, workflows can be easily generated to assemble
genome from various organisms, from bacteria to more complex eukaryots. Dedicated and optional
steps are included to take into account the specific features of procaryotic genomes assembly, i.e..
circularization and definition of the origin of replication.

In order to build a pipeline, the user customizes mainly a file in YAML (Yet Another Markup Lan-
guage) format: config.yaml. Two other files may be necessary to install dependencies tools path.yaml
and manage resources on a HPC with a job scheduler environment cluster config.yaml. CulebrONT
uses the snakemake architecture in order to run a relevant set of rules, each one being executed into
a dedicated virtual environment.

1.1 config.yaml

The main workflow parameters determining the assembly strategy are stored and read by Cule-
brONT from config.yaml (see figure 1.A). This file provides the path to the fastq (required, plain
or gzipped), fast5 and reference genome (if any) files. For each step (assembly, polishing or correc-
tion), the user can choose which tools, including quality evaluation tools, must be launched and can
define custom options (or default) for these programs. This allows users to run different workflows
on exactly the same dataset, while recording tools versions and parameters.

1.2 tools path.yaml

CulebrONT uses singularity to setup dependencies of each workflow (see figure 1.B). Pre built images
are available on the i-Trop IRD platform server https://itrop.ird.fr/culebront_utilities/

singularity_build/. It is also possible to build singularity images on your local or HPC ma-
chines, but root access is necessary. Dedicated singularity recipes can be found on our github
repository (https://github.com/SouthGreenPlatform/CulebrONT_pipeline). These Singular-
ity recipes containers allows an easy installation of CulebrONT dependencies tools. Alternatively,
CulebrONT also allows the use of Environment Modules usually found on clusters.

The tools path.yaml file specifies the paths of the singularity containers or of the available module
environments.

1.3 cluster config.yaml

Within CulebrONT, users can take full advantage of Snakemake for workflow execution on a cluster
or on the cloud.

1

https://itrop.ird.fr/culebront_utilities/singularity_build/
https://itrop.ird.fr/culebront_utilities/singularity_build/
https://github.com/SouthGreenPlatform/CulebrONT_pipeline


The cluster config.yaml file defines the requested HPC resources (memory, CPU number, parti-
tions, CPU/GPU access) for executing rules on a cluster with a job scheduler, and can be adapted
by the user or system administrators (see figure 1.C). If needed, execution through command-line
cluster wrappers provide additional controls and customization possibilities to the user. An easy-to-
use Snakemake profile method is described on our documentation page. In the absence of a cluster
setup, the workflow will be executed locally.

Figure 1: Configuration files setup defining an instance of the workflow.

2 How to run CulebrONT?

A comprehensive documentation can be found online https://culebront-pipeline.readthedocs.
io/en/latest/ and a test dataset is available on the i-Trop server https://itrop.ird.fr/culebront_
utilities/

2.1 Building pipelines from config.yaml

We present here some examples of modular pipelines build using the config.yaml file (figure 2).
Users can be interested to test the best assembly pipeline on a bacterial reference strain before
launching it on multiple related strains, for instance. If an eukaryotic organism with a large genome
size (≥ 100Mb or more) is targeted, starting with testing all assemblers and checking quality of
raw assemblies before relaunching CulebrONT with polishing and correction with only the best
assembler(s) is more relevant. The user can thus choose optional tools for each integrated step.

2

https://culebront-pipeline.readthedocs.io/en/latest/
https://culebront-pipeline.readthedocs.io/en/latest/
https://itrop.ird.fr/culebront_utilities/
https://itrop.ird.fr/culebront_utilities/


Figure 2: Several possibilities to build a workflow. ASS: assembly, CIR: circularisation, POL:
polishing, CORR: correction, FIXS: fixstart, QUAL: quality control, REP: final report. For each
step, multiple tools are available.

2.2 Building a pipeline for prokaryotes or eukaryotes

Assembly: CulebrONT currently includes six recent and community-validated assemblers (Figures
4 and 3, blue squares): Flye[1], Canu[2], Miniasm[3] + Minipolish[4], Shasta [5], Smartdenovo[6]
and Raven[7]. Tools versions for each release can be found in the CulebrONT documentation.

• Canu[2] performs assembly by using corrected and trimmed reads. Its assembly strategy uses
a overlap-layout-consensus (OLC) approach.

• Flye[1] generates the concatenation of multiple disjoint genomic segments called disjointigs to
build a repeat graph. Reads are mapped to this repeat graph to resolve conflicts (unbridged
repeats) and output contigs.

• Miniasm[3] performs the layout step of OLC. Read overlapping is performed separately with
Minimap2[3].

• Raven[7] also uses an OLC approach. The overlapping step is similar to Miniasm and per-
formed by Minimap2. The initial consensus step uses Racon[8]. Layout step removes spurious
overlaps from the graph, improving contiguity.

• Smartdenovo[6] performs read overlapping, rescues missing overlaps, identifies low-quality
regions and produces a consensus.

• Shasta[5] is a computationally efficient assembler, relying on a reduced representation of
marker k-mers used to find overlaps and to build an assembly graph.

Polishing: This step is ensured by Racon[8] (Figures 4 and 3, yellow squares). Racon corrects raw
contigs generated by raw assembly methods using the original ONT or PB reads. The user can
specify a number of Racon rounds (constrains from 1 to 9 rounds) and CulebrONT will recursively
execute them (generally between 2 to 4 iterations are commonly done). Polishing from assembled
pseudomolecules obtained using Miniasm is automatically performed by Racon, also included in
minipolish.

3



Figure 3: Circular option on config.yaml file is activated

Correction: Correction can improve the consensus sequence for a draft or polished ONT-based
genome assembly. Community validated tools Nanopolish[9] and Medaka1 are included (Figures 3
and 4, orange squares). Medaka uses neural networks applied to a pileup of individual sequencing
reads in fastq against a draft assembly. The model training can be performed using CulebrONT or
provided externally. Correction by segments of the assembled molecules is manage by CulebrONT,
for both Nanopolish and Medaka, in a parallel way, improving speed.

Pilon[10] has been recently included and can be activated in order to correct assemblies using
Illumina short reads.

Even if prokaryotic genomes are smaller and less repetitive than eukaryotic ones, Circularisation
represents a specific dimension of the assembly task. If an assembled molecule, for example a bacte-
rial chromosome or a plasmid, is identified as circular, this molecule is tagged and will be specially
treated in the pipeline (see figure 3, pink squares). If the circular step is activated, the −−plasmids
option on Flye (<=v2.9) will be automatically used. For Canu and Smartdenovo, Circlator[11] is
used to circularise assemblies. Circularisation for Miniasm is performed by Minipolish[4], which first
polishes Miniasm graph assembly using Racon and then handles circularisation. In CulebrONT, for
others assemblers (not miniasm), tagging and rotation of circular molecule before each polishing
step is implemented. The starting position of circular contigs is arbitrarily shifted between polish-

1https://github.com/nanoporetech/medaka

4

https://github.com/nanoporetech/medaka


ing rounds. The circular status of Miniasm, Raven and Shasta contigs is determined by inspecting
assemblers GFA files, or a log file for Flye and Circlator, in a dedicated tag circular step, where
only circular fasta sequences are tagged.

The Fixstart rule uses the fasta file generated after the most downstream step of the pipeline. It
shifts the start position of circular sequences so that the origin of replication of the contig coincides
with the start of the ortholog of the dnaA gene (if found). This is useful to harmonize the origin of
bacterial genomes in a multiple alignment.

The circular option can be True or False in the config.yaml file. The Figure 4 presents a possible
pipeline without the circular step, for eukaryotes for instance.

Figure 4: Circular option on config.yaml file is deactivated

2.3 Quality control

A wide variety of quality control tools is implemented in CulebrONT to check accuracy of a given
assembly (all optional). Busco[12] evaluates genome completeness and accuracy by comparison of
predicted genes with a specified database of conserved genes. Various metrics, such as the num-
ber of contigs, length of the longest contig, N50, number of predicted genes, numbers of potential
misassemblies are computed using Quast [13]. If Busco or Quast are selected, their statistics will
be computed for all assemblies generated by the pipeline, regardless of their stage in the workflow.
Their statistics are summarized in the CulebrONT final HTML report. The complete output of
these tools can also be explored in the output directory.

Supplemental tools are also included: blobtools[14] to detect contamination, assemblytics[15] to com-
pare contiguity of the assemblies against a reference genome, KAT [16] and Merqury [17] to explore
k-mers frequencies and check possible contamination, samtools FLAGSTATS to compute remap-
ping percentage over assemblies, and Mauve[18] to generate a multiple-alignment of the alternative
assemblies (for small bacterial genomes). Only the fasta file generated after the most downstream
step of the pipeline is analyzed by these optional tools. If selected, their statistics are also summa-
rized in the CulebrONT final HTML report.

5



Figure 5: Output folder architecture

2.4 Output and reporting

CulebrONT generates an output directory with a specific architecture (Figure 5). For each analysed
sample, the output directory contains subdirectories named after selected steps in the config.yaml
file (assembly, circularization, polishing, correction, fixstart, and quality control). In addition, a
LOG directory contains all logs created. In the FINAL REPORT folder, CulebrONT generates
an HTML report, summarizing statistics from the various steps of the pipeline and including a
record of the configuration parameters used in the pipeline, the version of the software tools and
the statistics about computing time and resources. An example of the report generated by the
test dataset can be found here: https://itrop.ird.fr/culebront_utilities/FINAL_REPORT/

CulebrONT_report.html.

2.5 Installation using a PyPi package

CulebrONT is available as a Pypi package https://pypi.org/project/culebrONT/. This Python
API allows users easy install CulebrONT in local or HPC machines https://culebront-pipeline.
readthedocs.io/en/latest/.

2.6 Conclusion

CulebrONT can be used in many experiments and on many samples, and in addition is a FAIR
product :

• Open source: You can find it on github with a licence under CeCill-C (http://www.cecill.
info/licences/Licence_CeCILL-C_V1-en.html) and GPLv3. You can modify and redis-
tribute it.

• Modulable: All steps to obtain the best quality assembly are included, and can be activated
(or not) according to your needs. All the most commonly used tools in the community are

6

https://itrop.ird.fr/culebront_utilities/FINAL_REPORT/CulebrONT_report.html
https://itrop.ird.fr/culebront_utilities/FINAL_REPORT/CulebrONT_report.html
https://pypi.org/project/culebrONT/
https://culebront-pipeline.readthedocs.io/en/latest/
https://culebront-pipeline.readthedocs.io/en/latest/
http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.html
http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.html


integrated, as well as various state-of-the-art quality control tools. The possibility to use
containers makes it easy to change and control tools version.

• Scalable: most eukaryote or prokaryote genome can be assembled and circular molecules are
handled accordingly. You just need to fill in a simple text-based configuration file to build a
personalised pipeline. The limits are imposed by the hardware, not the code.

• Intuitive: in order to quickly give the user an idea of the best final assembly, a well structured
output directory and log files are provided as well as a report with statistics and images of
the most important steps.

• Traceable: users can reproduce the analysis easily using the report and config.yaml, and the
HTML report will provide all information about softwares version, original data, QC, and
options used.

2.7 Related pipeline of interest

BaseDMux2 is another snakemake pipeline developed in collaboration with the CulebrONT projet.
It allows basecalling, demultiplexing and filtering ONT data in a flexible way before assemblies. Its
output can be used directly as input for CulebrONT.

2.8 Competing interests

The authors declare no competing interests.

References

[1] Kolmogorov, M., Yuan, J., Lin, Y., Pevzner, P.A.: Assembly of long, error-prone reads using
repeat graphs. Nature Biotechnology 37(5), 540–546 (2019). doi:10.1038/s41587-019-0072-8

[2] Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., Phillippy, A.M.:
Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and
repeat separation. Genome Research 27(5), 722–736 (2017). doi:10.1101/gr.215087.116.
http://genome.cshlp.org/content/27/5/722.full.pdf+html

[3] Li, H.: Minimap and miniasm: fast mapping and de novo assembly for noisy
long sequences. Bioinformatics 32(14), 2103–2110 (2016). doi:10.1093/bioinformatics/btw152.
https://academic.oup.com/bioinformatics/article-pdf/32/14/2103/19567911/btw152.pdf

[4] Wick, R.R., Holt, K.E.: Benchmarking of long-read assemblers for prokaryote whole
genome sequencing [version 4; peer review: 4 approved]. F1000Research 8(2138) (2021).
doi:10.12688/f1000research.21782.4

[5] Shafin, K., Pesout, T., Lorig-Roach, R., Haukness, M., Olsen, H.E., Bosworth, C., Armstrong,
J., Tigyi, K., Maurer, N., Koren, S., Sedlazeck, F.J., Marschall, T., Mayes, S., Costa, V.,
Zook, J.M., Liu, K.J., Kilburn, D., Sorensen, M., Munson, K.M., Vollger, M.R., Monlong, J.,
Garrison, E., Eichler, E.E., Salama, S., Haussler, D., Green, R.E., Akeson, M., Phillippy, A.,
Miga, K.H., Carnevali, P., Jain, M., Paten, B.: Nanopore sequencing and the shasta toolkit
enable efficient de novo assembly of eleven human genomes. Nature Biotechnology 38(9), 1044–
1053 (2020). doi:10.1038/s41587-020-0503-6

[6] Liu, H., Wu, S., Li, A., Ruan, J.: Smartdenovo: A de novo assembler using
long noisy reads. https://www.preprints.org/ (2020). doi:10.20944/preprints202009.0207.v1.
https://www.preprints.org/manuscript/202009.0207/v1

2https://github.com/vibaotram/baseDmux

7

https://github.com/vibaotram/baseDmux


[7] Vaser, R., Šikić, M.: Raven: a de novo genome assem-
bler for long reads. bioRxiv (2020). doi:10.1101/2020.08.07.242461.
https://www.biorxiv.org/content/early/2020/08/10/2020.08.07.242461.full.pdf

[8] Vaser, R., Sović, I., Nagarajan, N., Šikić, M.: Fast and accurate de novo genome assembly from
long uncorrected reads. Genome research 27(5), 737–746 (2017). doi:10.1101/gr.214270.116.
28100585[pmid]

[9] Loman, N.J., Quick, J., Simpson, J.T.: A complete bacterial genome assembled de
novo using only nanopore sequencing data. Nature Methods 12(8), 733–735 (2015).
doi:10.1038/nmeth.3444

[10] Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C.A.,
Zeng, Q., Wortman, J., Young, S.K., Earl, A.M.: Pilon: An integrated tool for comprehensive
microbial variant detection and genome assembly improvement. PLoS ONE 9(11), 112963
(2014). doi:10.1371/journal.pone.0112963

[11] Hunt, M., Silva, N.D., Otto, T.D., Parkhill, J., Keane, J.A., Harris, S.R.: Circlator: automated
circularization of genome assemblies using long sequencing reads. Genome Biology 16(1), 294
(2015). doi:10.1186/s13059-015-0849-0

[12] Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., Zdobnov, E.M.:
BUSCO: assessing genome assembly and annotation completeness with single-copy
orthologs. Bioinformatics 31(19), 3210–3212 (2015). doi:10.1093/bioinformatics/btv351.
https://academic.oup.com/bioinformatics/article-pdf/31/19/3210/17086320/btv351.pdf

[13] Gurevich, A., Saveliev, V., Vyahhi, N., Tesler, G.: QUAST: quality assessment tool for genome
assemblies. Bioinformatics 29(8), 1072–1075 (2013). doi:10.1093/bioinformatics/btt086

[14] Laetsch, D., Blaxter, M.: Blobtools: Interrogation of genome assemblies [ver-
sion 1; peer review: 2 approved with reservations]. F1000Research 6(1287) (2017).
doi:10.12688/f1000research.12232.1

[15] Nattestad, M., Schatz, M.C.: Assemblytics: a web analytics tool for the detection of variants
from an assembly. Bioinformatics 32(19), 3021–3023 (2016). doi:10.1093/bioinformatics/btw369

[16] Mapleson, D., Garcia Accinelli, G., Kettleborough, G., Wright, J., Clavijo, B.J.: KAT: a k-mer
analysis toolkit to quality control NGS datasets and genome assemblies. Bioinformatics 33(4),
574–576 (2017)

[17] Rhie, A., Walenz, B.P., Koren, S., Phillippy, A.M.: Merqury: reference-free quality, com-
pleteness, and phasing assessment for genome assemblies. Genome Biology 21(1), 245 (2020).
doi:10.1186/s13059-020-02134-9

[18] Darling, A.C.E., Mau, B., Blattner, F.R., Perna, N.T.: Mauve: multiple alignment of con-
served genomic sequence with rearrangements. Genome research 14(7), 1394–1403 (2004).
doi:10.1101/gr.2289704. 15231754[pmid]

8


	CulebrONT's architecture
	config.yaml
	tools_path.yaml
	cluster_config.yaml

	How to run CulebrONT?
	Building pipelines from config.yaml
	Building a pipeline for prokaryotes or eukaryotes
	Quality control
	Output and reporting
	Installation using a PyPi package
	Conclusion
	Related pipeline of interest
	Competing interests


